Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 463, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714688

RESUMO

Adverse perinatal factors can interfere with the normal development of the brain, potentially resulting in long-term effects on the comprehensive development of children. Presently, the understanding of cognitive and neurodevelopmental processes under conditions of adverse perinatal factors is substantially limited. There is a critical need for an open resource that integrates various perinatal factors with the development of the brain and mental health to facilitate a deeper understanding of these developmental trajectories. In this Data Descriptor, we introduce a multicenter database containing information on perinatal factors that can potentially influence children's brain-mind development, namely, periCBD, that combines neuroimaging and behavioural phenotypes with perinatal factors at county/region/central district hospitals. PeriCBD was designed to establish a platform for the investigation of individual differences in brain-mind development associated with perinatal factors among children aged 3-10 years. Ultimately, our goal is to help understand how different adverse perinatal factors specifically impact cognitive development and neurodevelopment. Herein, we provide a systematic overview of the data acquisition/cleaning/quality control/sharing, processes of periCBD.


Assuntos
Encéfalo , Desenvolvimento Infantil , Criança , Pré-Escolar , Humanos , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , China , Cognição , Bases de Dados Factuais , Neuroimagem
2.
Netw Neurosci ; 7(3): 1080-1108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781147

RESUMO

A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).

3.
Sci Data ; 10(1): 545, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604823

RESUMO

During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013-2022), the first ten-year stage of the lifespan CCNP (2013-2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0-17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the "Chinese Data-sharing Warehouse for In-vivo Imaging Brain" in the Chinese Color Nest Project (CCNP) - Lifespan Brain-Mind Development Data Community ( https://ccnp.scidb.cn ) at the Science Data Bank.


Assuntos
Povo Asiático , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , China , Data Warehousing , Bases de Dados Factuais , Neurociências
4.
Dev Cogn Neurosci ; 61: 101244, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062244

RESUMO

Pediatric neuroimaging datasets are rapidly increasing in scales. Despite strict protocols in data collection and preprocessing focused on improving data quality, the presence of head motion still impedes our understanding of neurodevelopmental mechanisms. Large head motion can lead to severe noise and artifacts in magnetic resonance imaging (MRI) studies, inflating correlations between adjacent brain areas and decreasing correlations between spatial distant territories, especially in children and adolescents. Here, by leveraging mock-scans of 123 Chinese children and adolescents, we demonstrated the presence of increased head motion in younger participants. Critically, a 5.5-minute training session in an MRI mock scanner was found to effectively suppress the head motion in the children and adolescents. Therefore, we suggest that mock scanner training should be part of the quality assurance routine prior to formal MRI data collection, particularly in large-scale population-level neuroimaging initiatives for pediatrics.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adolescente , Criança , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Neuroimagem , Movimentos da Cabeça , Artefatos
6.
Sci Data ; 9(1): 286, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680932

RESUMO

The big-data use is becoming a standard practice in the neuroimaging field through data-sharing initiatives. It is important for the community to realize that such open science effort must protect personal, especially facial information when raw neuroimaging data are shared. An ideal tool for the face anonymization should not disturb subsequent brain tissue extraction and further morphological measurements. Using the high-resolution head images from magnetic resonance imaging (MRI) of 215 healthy Chinese, we discovered and validated a template effect on the face anonymization. Improved facial anonymization was achieved when the Chinese head templates but not the Western templates were applied to obscure the faces of Chinese brain images. This finding has critical implications for international brain imaging data-sharing. To facilitate the further investigation of potential culture-related impacts on and increase diversity of data-sharing for the human brain mapping, we released the 215 Chinese multi-modal MRI data into a database for imaging Chinese young brains, namely'I See your Brains (ISYB)', to the public via the Science Data Bank ( https://doi.org/10.11922/sciencedb.00740 ).


Assuntos
Mapeamento Encefálico , Neuroimagem , Encéfalo/anatomia & histologia , China , Humanos , Imageamento por Ressonância Magnética
7.
Dev Cogn Neurosci ; 52: 101020, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653938

RESUMO

The ongoing Chinese Color Nest Project (CCNP) was established to create normative charts for brain structure and function across the human lifespan, and link age-related changes in brain imaging measures to psychological assessments of behavior, cognition, and emotion using an accelerated longitudinal design. In the initial stage, CCNP aims to recruit 1520 healthy individuals (6-90 years), which comprises three phases: developing (devCCNP: 6-18 years, N = 480), maturing (matCCNP: 20-60 years, N = 560) and aging (ageCCNP: 60-84 years, N = 480). In this paper, we present an overview of the devCCNP, including study design, participants, data collection and preliminary findings. The devCCNP has acquired data with three repeated measurements from 2013 to 2017 in Southwest University, Chongqing, China (CCNP-SWU, N = 201). It has been accumulating baseline data since July 2018 and the second wave data since September 2020 in Chinese Academy of Sciences, Beijing, China (CCNP-CAS, N = 168). Each participant in devCCNP was followed up for 2.5 years at 1.25-year intervals. The devCCNP obtained longitudinal neuroimaging, biophysical, social, behavioral and cognitive data via MRI, parent- and self-reported questionnaires, behavioral assessments, and computer tasks. Additionally, data were collected on children's learning, daily life and emotional states during the COVID-19 pandemic in 2020. We address data harmonization across the two sites and demonstrated its promise of characterizing the growth curves for the overall brain morphometry using multi-center longitudinal data. CCNP data will be shared via the National Science Data Bank and requests for further information on collaboration and data sharing are encouraged.


Assuntos
COVID-19 , Pandemias , Encéfalo , Humanos , Estudos Longitudinais , Neuroimagem , SARS-CoV-2
8.
Front Neuroinform ; 13: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105548

RESUMO

The abnormality occurs at molecular, cellular as well as network levels in patients with Alzheimer's disease (AD) prior to diagnosis. Most previous connectivity studies were conducted at 1 out of 3 (local, meso and global) scales in subjects covering only part of the entire AD spectrum (subjective cognitive decline, SCD; amnestic mild cognitive impairment, aMCI; and then fully manifest AD). Data interpretation within the framework of disease progression is therefore difficult. The current study included 3 age- and sex-matched cohorts: SCD (n = 32), aMCI (n = 37) and fully-established AD (n = 30). A group of healthy elderly subjects (n = 40) were included as a normal control (NC). Network connectivity was examined at the local (degree centrality), meso [subgraph centrality (SC)], and global (eigenvector and page-rank centralities) levels. As compared to NC, SCD subjects had isolated decrease of SC in primary (somatomotor and visual) networks. aMCI subjects had decreased centralities at all three scales in associative (frontoparietal control, dorsal attention, limbic and default) networks. AD subjects had increased centrality at the global scale in all seven networks. There was a positive association between Montreal Cognitive Assessment (MoCA) scores and DC in the frontoparietal control network in SCD, a negative relationship between Mini-Mental State Examination (MMSE) scores and EC in the somatomotor network in AD. These findings suggest that the primary network is impaired as early as in SCD. Impairment in the associative network also starts at the local level at this stage and may contribute to the cognitive decline. As associative network impairment extends from local to meso and global scales in aMCI, compensatory mechanisms in the primary network are activated.

9.
Front Neurol ; 9: 907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429821

RESUMO

Connectivity-based methods are essential to explore brain reorganization after a stroke and to provide meaningful predictors for late motor recovery. We aim to investigate the homotopic connectivity alterations during a 180-day follow-up of patients with pontine infarction to find an early biomarker for late motor recovery prediction. In our study, resting-state functional MRI was performed in 15 patients (11 males, 4 females, age: 57.87 ± 6.50) with unilateral pontine infarction and impaired motor function during a period of 6 months (7, 14, 30, 90, and 180 days after stroke onset). Clinical neurological assessments were performed using the Fugl-Meyer scale (FM).15 matched healthy volunteers were also recruited. Whole-brain functional homotopy in each individual scan was measured by voxel-mirrored homotopic connectivity (VMHC) values. Group-level analysis was performed between stroke patients and normal controls. A Pearson correlation was performed to evaluate correlations between early VMHC and the subsequent 4 visits for behavioral measures during day 14 to day 180. We found in early stroke (within 7 days after onset), decreased VMHC was detected in the bilateral precentral and postcentral gyrus and precuneus/posterior cingulate cortex (PCC), while increased VMHC was found in the hippocampus/amygdala and frontal pole (P < 0.01). During follow-up, VMHC in the precentral and postcentral gyrus increased to the normal level from day 90, while VMHC in the precuneus/PCC presented decreased intensity during all time points (P < 0.05). The hippocampus/amygdala and frontal pole presented a higher level of VMHC during all time points (P < 0.05). Negative correlation was found between early VMHC in the hippocampus/amygdala with FM on day 14 (r = -0.59, p = 0.021), day 30 (r = -0.643, p = 0.01), day 90 (r = -0.693, p = 0.004), and day 180 (r = -0.668, p = 0.007). Furthermore, early VMHC in the frontal pole was negatively correlated with FM scores on day 30 (r = -0.662, p = 0.013), day 90 (r = -0.606, p = 0.017), and day 180 (r = -0.552, p = 0.033). Our study demonstrated the potential utility of early homotopic connectivity for prediction of late motor recovery in pontine infarction.

11.
Neurobiol Aging ; 56: 138-149, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28528774

RESUMO

Alterations in both local and remote connectivity were reported in amnestic mild cognitive impairment (aMCI) patients but rarely in the same group of patients. In the present study, we employed a novel resting-state functional magnetic resonance imaging (rfMRI) connectome index, regional functional homogeneity on the 2-dimensional cortical surface, to detect full-cortex vertex-wise changes of the local rfMRI connectivity in 32 aMCI patients compared with 40 healthy controls. We further used the seed-based functional connectivity to explore the remote rfMRI connectivity in aMCI. The results revealed significantly lower local connectivity in the default network and higher local connectivity in the somatomotor network in aMCI patients. Abnormal remote connectivity relevant to local connectivity was primarily detectable within the default network (decrease) and in the somatomotor and attention networks (increase). The abnormalities in the remote (not local) default network connectivity were significantly associated with episodic memory performance in patients. These distance-related connectivity profiles illustrated a dysfunctional pattern in aMCI, which extended our knowledge of this pathological aging process.


Assuntos
Amnésia/psicologia , Córtex Cerebral/fisiopatologia , Cognição/fisiologia , Disfunção Cognitiva/psicologia , Idoso , Envelhecimento/patologia , Envelhecimento/fisiologia , Amnésia/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
12.
Sci Bull (Beijing) ; 61(24): 1844-1854, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066681

RESUMO

A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determination in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...